Affiliation:
1. School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
Abstract
This paper presents an algorithm for structural topology optimization involving linear buckling. In this algorithm, finite element analysis (FEA) is conducted only in a domain with solid and gray elements, eliminating the contribution of low density elements; and the response function is constructed in the full design domain accounting the contribution of removed low density elements. The errors induced by removing void elements in FEA on eigenvalue and eigenvectors are analyzed. By introducing a dynamic low bound of the first eigenvalue and a load-path coefficient, the algorithm allows converged, nondisjointed and accurate solutions for topology optimization of structures involving buckling. Numerical results are presented for plate and column-beam structures against linear buckling to illustrate the efficiency and effectiveness of the present algorithm. Buckling experiments of the plates manufactured from the obtained topologies further verify the present algorithm.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Mathematics,Computer Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献