Multiphysics Topology Optimization of Thermal Actuators by Using the Level Set-Based Multiple-Type Boundary Method

Author:

Xia Qi1ORCID,Shi Tielin1

Affiliation:

1. The State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China

Abstract

Thermal actuators use thermal expansion and contraction of an elastic body to produce motion at its output port. In the present study, a thermal actuator comprises an elastic body and heating/cooling devices. Such devices have a thin-layer shape and are installed on the surface of the elastic body. The design optimization of thermal actuator is a multiphysics problem, including both heat conduction and elastic deformation. The design variables include multiple types of boundaries, i.e., the temperature boundary (high temperature and low temperature) and the free boundary. In order to solve such a multiphysics optimization problem involving multiple types of boundaries, the level set-based multiple-type boundary method is employed. In the analysis for the shape derivative of the temperature boundary, the constrained variational principle is employed to explicitly include the temperature boundary condition into the weak form of heat conduction equation. Numerical examples in two dimensions are investigated.

Funder

the National Natural Science Foundation of China

the Natural Science Foundation for Distinguished Young Scholars of Hubei province of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3