A Nonintrusive Parametrized Reduced-Order Model for Periodic Flows Based on Extended Proper Orthogonal Decomposition

Author:

Li Teng1,Deng Shiyuan1,Zhang Kun1,Wei Haibo1,Wang Runlong2,Fan Jun3,Xin Jianqiang4,Yao Jianyao15ORCID

Affiliation:

1. College of Aerospace Engineering, Chongqing University, Chongqing 400044, P. R. China

2. China Gas Turbine Establishment, Chengdu 610500, P. R. China

3. Army Air Force Research Institute, Beijing 101121, P. R. China

4. China Academy of Launch Vehicle, Beijing 100076, P. R. China

5. Chongqing Key Laboratory of Heterogeneous Material Mechanics, Chongqing, P. R. China

Abstract

The periodic flows, such as vortex shedding and rotating flow in turbomachinery, are very common in both scientific and engineering fields. However, high-fidelity numerical simulations of unsteady flows are usually time-consuming, particularly when varying flow parameters need to be considered. In this paper, a novel nonintrusive parametrized reduced order model (PROM) approach for prediction of periodic flows is presented. The establishment of this ROM is based on two techniques, proper orthogonal decomposition (POD) and discrete Fourier transform (DFT), where the first one can extract the spatial features and the second has the ability to quantify the temporal effects of parameters. A prediction model based on artificial neural networks (ANNs) is used to map the flow parameters with DFT coefficients. Flows past a cylinder and two dimensions turbine flows are used to demonstrate the effectiveness of the proposed PROM. It is shown that the proposed POD-DFT-ANN (PDA) ROM are both efficient and accurate for the predictions of periodic flows with varying flow parameters.

Funder

National Natural Science Foundation of China

Chongqing Research Program of Basic Research and Frontier Technology

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Mathematics,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3