Frequency lock-in mechanism in the presence of blockage effects

Author:

Pan TianyuORCID,Li TengORCID,Li ChenghaoORCID,Yan ZhaoqiORCID,Li QiushiORCID

Abstract

This study reveals the blockage effects on vortex shedding, the lock-in mechanism of a forced oscillating cylinder, and the coupling effects of blockage and oscillation. The wind tunnel experiments and large eddy simulations were conducted at a Reynolds number of 2000, encompassing a range of blockage ratios from 0.15 to 0.5. The cylinder is subjected to forced harmonic oscillations in a direction perpendicular to the incoming flow to investigate the frequency lock-in mechanism. The research findings demonstrate that both blockage and forced vibration significantly influence the dynamics of vortex shedding by altering the development of the shear layer instability (SLI). For a fixed cylinder, high blockage effectively suppresses the growth of transverse disturbances, promoting a stable maintenance of the shear layer (SL). In high blockage, the flow deceleration induces the separation of the boundary layer from the sidewalls and the subsequent constriction of the mainstream toward the channel centerline, consequently leading to an increase in the Strouhal number. For the case of a fixed blockage ratio, forced vibration alters the flow supplement in the near-SL region. During the unlocked phase, a significant occurrence of backflow is observed near the SL, which promotes the development of SLI. However, proper vibration induces the transverse flow supplement in the near-SL region, which balance the amount carried away by mainstream, thereby suppressing the backflow. The coupling effects of blockage and vibration are evident in the shift of the lock-in region and the triggering of hysteresis, both of which are explained by the proposed mechanisms of blockage and lock-in.

Funder

National Science and Technology Major Project

Science Center for Gas Turbine Project

Advanced Jet Propulsion Creativity

Beijing Nova Program

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3