NOVEL COUPLING CONSTRAINT TECHNIQUE FOR EXPLICIT FINITE ELEMENT ANALYSIS

Author:

HO R. J.1,MEGUID S. A.1,SAUVÉ R. G.2

Affiliation:

1. Engineering Mechanics and Design Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada

2. Computational Mechanics Development Section, Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2, Canada

Abstract

This paper presents a unified novel technique for enforcing nonlinear beam-to-shell, beam-to-solid, and shell-to-solid constraints in explicit finite element formulations. The limitations of classical multi-point constraint approaches are examined at length, particularly in the context of explicit solution schemes. Novel formulation of a generalized constraint method that ensures proper element coupling is then presented, and its computer implementation in explicit integration algorithms is discussed. Crucial in this regard is the accurate and efficient representation of finite rotations, accomplished using an incremental rotation tensor. The results of some illustrative test cases show the accuracy and robustness of the newly developed algorithm for a wide range of deformation, including that in which large rotations are encountered. When compared to existing works, the salient features of the current method are in evidence.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3