On the Stability of Multi-Step Finite-Difference-Based Lattice Boltzmann Schemes

Author:

Krivovichev Gerasim V.1ORCID,Mikheev Sergey A.1

Affiliation:

1. Faculty of Applied Mathematics and Control Processes, Saint-Petersburg State University, 7/9 Universitetskaya nab., Saint-Petersburg, 199034, Russia

Abstract

Stability of finite-difference-based off-lattice Boltzmann schemes is analyzed. The time derivative in system of discrete Boltzmann equations is approximated by two-step modified central difference. Advective term is approximated by finite differences from first- to fourth-orders of accuracy. Characteristics-based (CB) schemes and schemes with traditional separate approximations of space derivatives are considered. A special class of high-order CB schemes with approximation in the internal nodes of grid patterns is constructed. It is demonstrated that apparent viscosity for the schemes of high-order is equal to kinematic viscosity of the system of Bhatnaghar–Gross–Krook kinetic equations. Stability of the schemes is analyzed by the von Neumann method for the cases of two flow regimes in unbounded domain. Stability is analyzed by the investigation of the stability domains in parameter space. The area of the domain is considered as the main numerical characteristic of the stability. As the main result of the analysis, it must be mentioned that the areas of CB schemes are greater than areas for the schemes with separate approximations.

Funder

Russian Foundation for Basic Research

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3