Integrating a Stabilized Radial Basis Function Method with Lattice Boltzmann Method

Author:

Bawazeer Saleh A.,Baakeem Saleh S.,Mohamad Abdulmajeed A.ORCID

Abstract

The lattice Boltzmann method (LBM) has two key steps: collision and streaming. In a conventional LBM, the streaming is exact, where each distribution function is perfectly shifted to the neighbor node on the uniform mesh arrangement. This advantage may curtail the applicability of the method to problems with complex geometries. To overcome this issue, a high-order meshless interpolation-based approach is proposed to handle the streaming step. Owing to its high accuracy, the radial basis function (RBF) is one of the popular methods used for interpolation. In general, RBF-based approaches suffer from some stability issues, where their stability strongly depends on the shape parameter of the RBF. In the current work, a stabilized RBF approach is used to handle the streaming. The stabilized RBF approach has a weak dependency on the shape parameter, which improves the stability of the method and reduces the dependency of the shape parameter. Both the stabilized RBF method and the streaming of the LBM are used for solving three benchmark problems. The results of the stabilized method and the perfect streaming LBM are compared with analytical solutions or published results. Excellent agreements are observed, with a little advantage for the stabilized approach. Additionally, the computational cost is compared, where a marginal difference is observed in the favor of the streaming of the LBM. In conclusion, one could report that the stabilized method is a viable alternative to the streaming of the LBM in handling both simple and complex geometries.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference60 articles.

1. Natural convection in a differentially heated enclosure filled with low Prandtl number fluids with modified lattice Boltzmann method

2. Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes;Mohamad,2019

3. Treatment of Transport at the Interface Between Multilayers via the Lattice Boltzmann Method

4. Lattice Boltzmann Method with Improved Radial Basis Function Method;Bawazeer,2019

5. Grid Refinement for Lattice-BGK Models

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3