TriECCC: Trilingual Corpus of the Extraordinary Chambers in the Courts of Cambodia for Speech Recognition and Translation Studies

Author:

Soky Kak1,Mimura Masato1,Kawahara Tatsuya1ORCID,Chu Chenhui1,Li Sheng2ORCID,Ding Chenchen2,Sam Sethserey3

Affiliation:

1. Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

2. National Institute of Information and Communications Technology, Soraku-gun, Kyoto 619-0289, Japan

3. Cambodia Academy of Digital Technology (CADT), Phnom Penh, 12252, Cambodia

Abstract

This paper presents an extended work on the trilingual spoken language translation corpus of the Extraordinary Chambers in the Courts of Cambodia (ECCC), namely TriECCC. TriECCC is a simultaneously spoken language translation corpus with parallel resources of speech and text in three languages: Khmer, English, and French. This corpus has approximately [Formula: see text] thousand utterances, approximately [Formula: see text], [Formula: see text], and [Formula: see text] h in length of speech, and [Formula: see text], [Formula: see text] and [Formula: see text] million words in text, in Khmer, English, and French, respectively. We first report the baseline results of machine translation (MT), and speech translation (ST) systems, which show reasonable performance. We then investigate the use of the ROVER method to combine multiple MT outputs and fine-tune the pre-trained English–French MT models to enhance the Khmer MT systems. Experimental results show that the ROVER is effective for combining English-to-Khmer and French-to-Khmer systems. Fine-tuning from both single and multiple parents shows the effective improvement on the BLEU scores for Khmer-to-English/French and English/French-to-Khmer MT systems.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finetuning Pretrained Model with Embedding of Domain and Language Information for ASR of Very Low-Resource Settings;International Journal of Asian Language Processing;2023-12

2. Domain and Language Adaptation Using Heterogeneous Datasets for Wav2vec2.0-Based Speech Recognition of Low-Resource Language;ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2023-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3