Finetuning Pretrained Model with Embedding of Domain and Language Information for ASR of Very Low-Resource Settings

Author:

Soky Kak1ORCID,Li Sheng2ORCID,Chu Chenhui3ORCID,Kawahara Tatsuya3ORCID

Affiliation:

1. Cambodia Academy of Digital Technology (CADT), Bridge 2, National Road 6A, Sangkat Prek Leap, Khan Chroy Changva, Phnom Penh, Cambodia

2. National Institute of Information and Communications Technology, Soraku-gun, Kyoto 619-0289, Japan

3. Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

Abstract

This study investigates the effective incorporation of meta-information such as domain and language in finetuning a pretrained model based on self-supervised learning (SSL) for automatic speech recognition (ASR) in very low-resource settings. SSL pretrained models have been shown to achieve comparable or even better performance to conventional end-to-end systems even when we finetune them with a small dataset. However, it still requires the specific target dataset with a considerable amount of labeled data, like 10 h, to achieve satisfactory performance. Thus, we propose to exploit heterogeneous datasets which are partially matched either in language or domain and apply multi-task learning (MTL) or adversarial learning (ADV) using the meta-information. The finetuning comprises (1) domain adaptation, which uses in-domain multi-lingual datasets, and (2) language adaptation, which uses datasets of the same language but different domains. The auxiliary task is domain identification for language adaptation and language identification for domain adaptation. We then embed the output of the auxiliary task into the encoder output of the ASR task. The target dataset is the Khmer corpus of the Extraordinary Chambers in the Courts of Cambodia (ECCC) in various sizes from one hour to 10 h. The experimental evaluations demonstrate that fusing the meta-information in MTL or ADV significantly improves ASR accuracy. Moreover, a two-step adaptation method which first conducts domain adaptation and then language adaptation is the most effective. We also show that the target labeled dataset of only 5 h gives an almost saturated performance.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3