Electrical conductivity and capacitance spectra of Bi1.37Sm0.13Zn0.92Nb1.50O6.92 pyrochlore ceramic in the range of 0–3 GHz

Author:

Qasrawi A. F.12,Bzour Faten M.1,Nazzal Eman O.1,Mergen A.3

Affiliation:

1. Department of Physics, Arab American University, Jenin, Palestine

2. Group of Physics, Faculty of Engineering, Atilim University, 06836 Ankara, Turkey

3. Metallurgical and Materials Engineering Department, Marmara University, 34722 Istanbul, Turkey

Abstract

In this work, the electrical properties of samarium-doped bismuth niobium zinc oxide ( Sm -doped BZN ) pyrochlore ceramics are investigated by means of temperature dependent electrical conductivity and capacitance spectroscopy in the frequency range of 0–3 GHz. It was observed that the novel dielectric Sm - BZN ceramic exhibits a temperature and electric field dependent dielectric breakdown. When measured at 300 K, the breakdown electric field is 1.12 kV/cm and when heated the breakdown temperature is ~ 420 K. The pyrochlore is thermally active above 440 K with conductivity activation energy of 1.37 eV. In addition, the room temperature capacitance spectra reflected a resonance–antiresonance switching property at 53 MHz when subjected to an AC signal of low power of 5 dBm. Furthermore, when the Sm - BZN ceramics are used as microwave cavity and tested in the frequency range of 1.0–3.0 GHz, the cavity behaves as low pass filter with wide tunability up to a frequency of 1.91 GHz. At this frequency it behaves as a band rejection filter that blocks waves of 1.91 GHz and 2.57 GHz frequencies. These properties of the Sm -doped BZN are promising as they indicate the usability of the ceramics in digital electronic circuits as resonant microwave cavities suitable for the production of low pass/rejection band filters.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3