LOW TEMPERATURE THERMOELECTRIC PROPERTIES AND AGING PHENOMENA OF NANOSTRUCTURED p-TYPEBi2-XSbXTe3(x = 1.46, 1.48, 1.52 AND 1.55)

Author:

HITCHCOCK DALE1,LIU YEN-LIANG2,LIU YUFEI1,TRITT TERRY M.13,HE JIAN1,LIU CHIA-JYI4

Affiliation:

1. Department of Physics and Astronomy, Clemson University, Clemson, SC 29631, USA

2. Department of Physics, National Changhua University of Education, Changhua 50007, Taiwan

3. Department of Materials Science, Clemson University, Clemson, SC 29631, USA

4. Department of Physics, National Changhua University of Education, Changhua, 50007 Taiwan, ROC

Abstract

Over the past decade the widely used p-type ( Bi2-xSbx) Te3bulk thermoelectric materials have been subject to various nanostructuring processes for higher thermoelectric performance. However, these nanostructuring processing were conducted on compositions optimized for bulk materials (x ~ 1.52–1.55). This leads to the question of whether the optimal composition for bulk materials is the same for their nanoscale counterparts. In this work we hydrothermally grew Bi2-xSbxTe3nanopowders (nominally, x = 1.46, 1.48, 1.52 and 1.55) and measured their thermoelectric properties on cold-pressed vacuum-sintered pellets (74–78% of the theoretical density) below 300 K. The measurements were conducted 18 months apart to probe the aging phenomena, with the samples stored in ambient conditions. We have found that (i) the peak of thermopower shifts to lower temperatures upon nanostructuring but it shifts back to higher temperatures upon aging; (ii) the electrical conductivity degrades by a factor of 1.5–2.3 upon aging while the temperature dependence is largely retained; and (iii) the ZT of freshly made samples is sensitive to the x value, a maximum ZT ~ 1.25(~ 0.62) at ~ 270 K (~ 255 K) was attained in the freshly made sample x = 1.55(x = 1.46), respectively; while the ZT of aged samples is significantly lowered by a factor of 2–4 but lesser x-dependent. These observations have been discussed in the context of charge buildup and compensation at grain boundaries.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3