Approximations to defect chemistry in Bi4Ti3O12

Author:

Martínez-Morales Ma. del Carmen1,Romero-Serrano José Antonio1,Gómez-Yáñez Carlos1,Rojas Luis Lartundo2

Affiliation:

1. Department of Metallurgical and Materials Engineering, Instituto Politécnico Nacional, U. P. Adolfo López Mateos, Zacatenco, 07738, Mexico City, Mexico

2. Center of Nano Sciences and Micro and Nano Technologies, Instituto Politécnico Nacional, U. P. Adolfo López Mateos, Zacatenco, 07738, Mexico City, Mexico

Abstract

Bismuth titanate (Bi4Ti3O[Formula: see text] or BiTO) is known for its high resistance to dielectric fatigue and relatively large remnant polarization. Owing to these characteristics, it has been applied in FeRAM memory. BiTO is also known to be a potential ionic conductor. In both applications, crystalline defects play an important role. In this work, a standard thermochemical equilibrium procedure is used to analyze defect chemistry in BiTO. The results indicate a strong oxidized state. To obtain a reduced condition, extremely low oxygen partial pressures and high temperatures have to be achieved. Even at normal conditions, results show a relatively high concentration of holes, which is in agreement with the [Formula: see text]-type leaking experimentally observed, relatively high concentration of oxygen vacancies, which suggest the potential application of BiTO as ion conductor, and relative high concentration of bismuth vacancies, in accordance with the known problem of bismuth volatilization observed during the processing of this material.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Point defect chemistry of donor-doped bismuth titanate ceramic;Journal of Materials Science: Materials in Electronics;2018-12-14

2. Editorial;Functional Materials Letters;2016-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3