Optimization of Selective Growth of SiGe for Source/Drain in 14nm and Beyond Nodes FinFETs

Author:

Radamson Henry H.123,Luo Jun12,Qin Changliang12,Yin Huaxiang12,Zhu Huilong12,Zhao Chao12,Wang Guilei12

Affiliation:

1. Key laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, P. R. China

2. University of Chinese Academy of Sciences, Beijing 100049, P. R. China

3. KTH Royal Institute of Technology, Brinellv. 8, 10044 Stockholm, Sweden

Abstract

In this work, optimization of selective epitaxy growth (SEG) of SiGe layers on source/drain (S/D) areas in 14nm node FinFETs with high-k & metal gate has been presented. The Ge content in epilayers was in range of 30%-40% with boron concentration of 1-3 × 1020 cm−3. The strain distribution in the transistor structure due to SiGe as stressor material in S/D was simulated and these results were used as feedback to design the layer profile. The epitaxy parameters were optimized to improve the layer quality and strain amount of SiGe layers. The in-situ cleaning of Si fins was crucial to grow high quality layers and a series of experiments were performed in range of 760-825 °C. The results demonstrated that the thermal budget has to be within 780-800 °C in order to remove the native oxide but also to avoid any harm to the shape of Si fins. The Ge content in SiGe layers was directly determined from the misfit parameters obtained from reciprocal space mappings using synchrotron radiation. Atomic layer deposition (ALD) technique was used to deposit HfO2 as high-k dielectric and B-doped W layer as metal gate to fill the gate trench. This type of ALD metal gate has decent growth rate, low resistivity and excellent capability to fill the gate trench with high aspect-ratio. Finally, the electrical characteristics of fabricated FinFETs were demonstrated and discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3