EXPERIMENTAL AND COMPUTATIONAL STUDIES ON PROGRESSIVE FAILURE ANALYSIS OF NOTCHED CROSS-PLY CFRP COMPOSITE

Author:

PHAM DINH CHI1,SUN XIUSHAN2

Affiliation:

1. Department of Engineering Mechanics, Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore

2. Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore

Abstract

This work presents experimental and computational studies on progressive failure analysis of notched cross-ply carbon fiber reinforced polymer (CFRP) composite. The carbon/epoxy composite laminated with [90/0]s layup is tested using double-notched specimens loaded in tension. The load-displacement curve, failure load and damage patterns of all tested specimens are discussed. In addition, a numerical analysis approach based on material property degradation method (MPDM) and cohesive elements (CE) is illustrated to capture complex failure mechanisms and damage progression as observed in the tested specimens. The MPDM is used to model the in-plane failure of 90° plies and 0° plies while the cohesive elements are used to account for the delamination at the [90/0] interfaces. Different progressive failure models employing fracture mechanics, continuum mechanics and micromechanics of failure are presented based on the MPDM-CE approach. The failure analyses by these progressive models are performed and their predictions are compared with the experimental results of notched [90/0]s CFRP composite. Reasonably good agreement between experimental results and simulation results is obtained and it is shown that the MPDM-CE approach can effectively predict the progressive failure of double-notched [90/0]s composite laminate.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation,Numerical Analysis

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3