LEFT ADEQUATE AND LEFT EHRESMANN MONOIDS

Author:

BRANCO MÁRIO J. J.1,GOMES GRACINDA M. S.1,GOULD VICTORIA2

Affiliation:

1. Departamento de Matemática, Faculdade de Ciências, Universidade de Lisboa, Centro de Álgebra, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal

2. Department of Mathematics, University of York, Heslington, York YO10 5DD, UK

Abstract

This is the first of two articles studying the structure of left adequate and, more generally, of left Ehresmann monoids. Motivated by a careful analysis of normal forms, we introduce here a concept of proper for a left adequate monoid M. In fact, our notion is that of T-proper, where T is a submonoid of M. We show that any left adequate monoid M has an X*-proper cover for some set X, that is, there is a left adequate monoid [Formula: see text] that is X*-proper, and an idempotent separating surjective morphism [Formula: see text] of the appropriate type. Given this result, we may deduce that the free left adequate monoid on any set X is X*-proper. In a subsequent paper, we show how to construct T-proper left adequate monoids from any monoid T acting via order-preserving maps on a semilattice with identity, and prove that the free left adequate monoid is of this form. An alternative description of the free left adequate monoid will appear in a paper of Kambites. We show how to obtain the labeled trees appearing in his result from our structure theorem. Our results apply to the wider class of left Ehresmann monoids, and we give them in full generality. We also indicate how to obtain some of the analogous results in the two-sided case. This paper and its sequel, and the two of Kambites on free (left) adequate semigroups, demonstrate the rich but accessible structure of (left) adequate semigroups and monoids, introduced with startling insight by Fountain some 30 years ago.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proper Ehresmann semigroups;Proceedings of the Edinburgh Mathematical Society;2023-08

2. Product decompositions of semigroups induced by action pairs;Dissertationes Mathematicae;2023

3. Quasi-adequate semigroups with medial idempotents;Journal of Algebra and Its Applications;2022-12-28

4. On the structure of glrac semigroups;Semigroup Forum;2022-12-20

5. An Ehresmann-Schein-Nambooripad type theorem for DRC-semigroups;Semigroup Forum;2022-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3