Abstract
A monoid in which every principal right ideal is projective is called a right PP monoid. Special classes of such monoids have been investigated in (2), (3), (4) and (8). There is a well-known internal characterisation of right PP monoids using the relation ℒ* which is defined as follows. On a semigroup S, (a,b) ∈ℒ* if and only if the elements a,b of S are related by Green's relation ℒ* in some oversemigroup of S. Then a monoid S is a right PP monoid if and only if each ℒ*-class of S contains an idempotent. The existence of an identity element is not relevant for the internal characterisation and in this paper we study some classes of semigroups whose idempotents commute and in which each ℒ*-class contains an idempotent. We call such a semigroup a right adequate semigroup since it contains a sufficient supply of suitable idempotents. Dually we may define the relation ℛ* on a semigroup and the notion of a left adequate semigroup. A semigroup which is both left and right adequate will be called an adequate semigroup.
Publisher
Cambridge University Press (CUP)
Cited by
191 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献