UNKNOTTING NUMBERS AND MINIMAL KNOT DIAGRAMS

Author:

BERNHARD JAMES A.1

Affiliation:

1. Princeton University, Princeton, New Jersey 08544, USA

Abstract

We show there is an infinite number of knots whose unknotting numbers can only be realized through a sequence of crossing changes on a nonminimal projection, if ambient isotopies between crossing changes are not allowed. In this process, the question arises one crossing change at a time is made, always on a minimal projection, in order to obtain the unknotting number of a knot.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Counterexample to the Bernhard–Jablan Unknotting Conjecture;Experimental Mathematics;2019-05-10

2. Alternating knots with unknotting number one;Advances in Mathematics;2017-01

3. Unknotting and maximum unknotting numbers;Journal of Knot Theory and Its Ramifications;2016-08

4. AN INFINITE FAMILY OF KNOTS WHOSE MOSAIC NUMBER IS REALIZED IN NON-REDUCED PROJECTIONS;Journal of Knot Theory and Its Ramifications;2013-06

5. UNKNOTTING NUMBERS OF DIAGRAMS OF A GIVEN NONTRIVIAL KNOT ARE UNBOUNDED;Journal of Knot Theory and Its Ramifications;2009-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3