Unknotting and maximum unknotting numbers

Author:

Zeković Ana1,Jablan Slavik1,Kauffman Louis2,Sazdanovic Radmila3,Stošić Marko45

Affiliation:

1. Department of Mathematical Sciences, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia

2. Department of Mathematics, University of Illinois at Chicago, Statistics and Computer Science (m/c 249), 851 South Morgan Street, Chicago, Illinois 60607-7045, USA

3. Department of Mathematics, North Carolina State University, 2311 Stinson Drive, Raleigh, NC 27695-8205, USA

4. The Mathematical Institute, Knez Mihailova 36, P.O. Box 367, 11001 Belgrade, Serbia

5. CAMGSD, Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal

Abstract

We introduce concepts of the maximum unknotting number and the mixed unknotting number, taking into consideration the Bernhard–Jablan Conjecture about computing the unknotting number based only on minimal knot diagrams. The existence of Kauffman knots (alternating knots, such that a crossing change does not change their minimal crossing number) was first suggested by Kauffman. We extend the concept and offer three related classes of knots named: Kauffman knots, Zeković knots and Taniyama knots.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Conway Gordian Graph;CR ACAD BULG SCI;2021-06-29

2. A Counterexample to the Bernhard–Jablan Unknotting Conjecture;Experimental Mathematics;2019-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3