Affiliation:
1. Mathematics Department, Haverford College, Haverford, Pennsylvania 19041, USA
Abstract
We study link-homotopy classes of links in the three sphere using reduced groups endowed with peripheral structures derived from meridian-longitude pairs. Two types of peripheral structures are considered — Milnor’s original version (called “pre-peripheral structures” in Levine’s terminology) and Levine’s refinement (called simply “peripheral structures”). We show here that pre-peripheral structures are not strong enough to classify links up to link-homotopy, and that Levine’s peripheral structures, although strong enough to distinguish those classes not distinguished by pre-peripheral structures, are also in all likelihood not strong enough to distinguish all link-homotopy classes. Following Levine’s classification program, we compare structure-preserving and realizable automorphisms, using an obstruction-theoretic approach suggested by work of Habegger and Lin. We find that these automorphism groups are in general different, so that a more complex program for classification by structured groups is required.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献