n-QUASI-ISOTOPY I: QUESTIONS OF NILPOTENCE

Author:

MELIKHOV SERGEY A.12,REPOVŠ DUŠAN3

Affiliation:

1. Steklov Mathematical Institute, Division of Geometry and Topology, ul. Gubkina 8, Moscow 119991, Russia

2. University of Florida, Department of Mathematics, 358 Little Hall, PO Box 118105, Gainesville, FL 32611-8105, USA

3. Institute of Mathematics, Physics and Mechanics, University of Ljubljana, 19 Jadranska cesta, 1001 Ljubljana, Slovenia

Abstract

It is well-known that no knot can be cancelled in a connected sum with another knot, whereas every link can be cancelled up to link homotopy in a (componentwise) connected sum with another link. In this paper we address the question whether the noncancellation property of knots holds for (piecewise-linear) links up to some stronger analogue of link homotopy, which still does not distinguish between sufficiently close C0-approximations of a topological link. We introduce a sequence of such increasingly stronger equivalence relations under the name of k-quasi-isotopy, k∈ℕ; all of them are weaker than isotopy (in the sense of Milnor). We prove that every link can be cancelled up to peripheral structure preserving isomorphism of any quotient of the fundamental group, functorially invariant under k-quasi-isotopy; functoriality means that the isomorphism between the quotients for links related by any allowable crossing change fits in the commutative diagram with the fundamental group of the complement to the intermediate singular link. The proof invokes Baer's theorem on the join of subnormal locally nilpotent subgroups. On the other hand, the integral generalized ( lk ≠ 0) Sato–Levine invariant [Formula: see text] is invariant under 1-quasi-isotopy, but is not determined by any quotient of the fundamental group (endowed with the peripheral structure), functorially invariant under 1-quasi-isotopy — in contrast to Waldhausen's theorem.As a byproduct, we use [Formula: see text] to determine the image of the Kirk–Koschorke invariant [Formula: see text] of fibered link maps.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topological isotopy and Cochran’s derived invariants;Topology, Geometry, and Dynamics;2021

2. Self C2-equivalence of two-component links and invariants of link maps;Journal of Knot Theory and Its Ramifications;2018-11

3. A new invariant and parametric connected sum of embeddings;Fundamenta Mathematicae;2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3