SIGNATURE, NULLITY AND DETERMINANT OF CHECKERBOARD COLORABLE VIRTUAL LINKS

Author:

IM YOUNG HO1,LEE KYEONGHUI2,LEE SANG YOUL1

Affiliation:

1. Department of Mathematics, Pusan National University, Pusan 609-735, Korea

2. Department of Mathematics, Graduate School of Natural Sciences, Pusan National University, Pusan 609-735, Korea

Abstract

In this paper, we present the Goeritz matrix for checkerboard colorable virtual links or, equivalently, checkerboard colorable links in thickened surfaces Sg × [0, 1], which is an extension of the Goeritz matrix for classical knots and links in ℝ3. Using this, we show that the signature, nullity and determinant of classical oriented knots and links extend to those of checkerboard colorable oriented virtual links.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the generalized virtual Goeritz matrix for virtual knots;Journal of Knot Theory and Its Ramifications;2023-04

2. Conversion to almost classical virtual links and pseudo Goeritz matrices;Journal of Knot Theory and Its Ramifications;2022-11-16

3. The Jones polynomial from a Goeritz matrix;Bulletin of the London Mathematical Society;2022-11-14

4. The Gordon–Litherland pairing for links in thickened surfaces;International Journal of Mathematics;2022-09-15

5. Polynomial and signature invariants for pseudo-links via Goeritz matrices;Journal of Knot Theory and Its Ramifications;2022-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3