The Gordon–Litherland pairing for links in thickened surfaces

Author:

Boden Hans U.1ORCID,Chrisman Micah2,Karimi Homayun1

Affiliation:

1. Mathematics & Statistics, McMaster University, Hamilton, Ontario, Canada

2. Mathematics, The Ohio State University, Marion, Ohio, USA

Abstract

We extend the Gordon–Litherland pairing to links in thickened surfaces, and use it to define signature, determinant and nullity invariants for links that bound (unoriented) spanning surfaces. The invariants are seen to depend only on the [Formula: see text]-equivalence class of the spanning surface. We prove a duality result relating the invariants from one [Formula: see text]-equivalence class of spanning surfaces to the restricted invariants of the other. Using Kuperberg’s theorem, these invariants give rise to well-defined invariants of checkerboard colorable virtual links. The determinants can be applied to determine the minimal support genus of a checkerboard colorable virtual link. The duality result leads to a simple algorithm for computing the invariants from the Tait graph associated to a checkerboard coloring. We show these invariants simultaneously generalize the combinatorial invariants defined by Im, Lee and Lee, and those defined by Boden, Chrisman and Gaudreau for almost classical links. We examine the behavior of the invariants under orientation reversal, mirror symmetry and crossing change. We give a 4-dimensional interpretation of the Gordon–Litherland pairing by relating it to the intersection form on the relative homology of certain double branched covers. This correspondence is made explicit through the use of virtual linking matrices associated to (virtual) spanning surfaces and their associated (virtual) Kirby diagrams.

Funder

natural sciences and engineering research council of canada

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast Reconstruction Model of the Ship Hull NURBS Surface with Uniform Continuity for Calculating the Hydrostatic Elements;Journal of Marine Science and Engineering;2023-09-18

2. The Jones polynomial from a Goeritz matrix;Bulletin of the London Mathematical Society;2022-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3