The Quantum Mechanics Canonically Associated to Free Probability I: Free Momentum and Associated Kinetic Energy

Author:

Accardi Luigi1,Hamdi Tarek23,Lu Yun Gang4

Affiliation:

1. Centro Vito Volterra, Università di Roma “Tor Vergata” Via Columbia 2, 00133 Roma, Italy

2. Department of Management Information Systems, College of Business Management, Qassim University, Ar Rass, Saudi Arabia

3. Laboratoire d’Analyse Mathématiques et Applications LR11ES11, Université de Tunis El-Manar, Tunisie

4. Dipartimento di Matematica, Università di Bari, via Orabona 4, 70125 Bari, Italy

Abstract

After a short review of the quantum mechanics canonically associated with a classical real valued random variable with all moments, we begin to study the quantum mechanics canonically associated to the standard semi-circle random variable [Formula: see text], characterized by the fact that its probability distribution is the semi-circle law [Formula: see text] on [Formula: see text]. We prove that, in the identification of [Formula: see text] with the [Formula: see text]-mode interacting Fock space [Formula: see text], defined by the orthogonal polynomial gradation of [Formula: see text], [Formula: see text] is mapped into position operator and its canonically associated momentum operator [Formula: see text] into [Formula: see text] times the [Formula: see text]-Hilbert transform [Formula: see text] on [Formula: see text]. In the first part of the present paper, after briefly describing the simpler case of the [Formula: see text]-harmonic oscillator, we find an explicit expression for the action, on the [Formula: see text]-orthogonal polynomials, of the semi-circle analogue of the translation group [Formula: see text] and of the semi-circle analogue of the free evolution [Formula: see text], respectively, in terms of Bessel functions of the first kind and of confluent hyper-geometric series. These results require the solution of the inverse normal order problem on the quantum algebra canonically associated to the classical semi-circle random variable and are derived in the second part of the present paper. Since the problem to determine, with purely analytic techniques, the explicit form of the action of [Formula: see text] and [Formula: see text] on the [Formula: see text]-orthogonal polynomials is difficult, the above mentioned results show the power of the combination of these techniques with those developed within the algebraic approach to the theory of orthogonal polynomials.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics

Reference13 articles.

1. L. Accardi, A. Barhoumi, Y. G. Lu, and M. Rhaima, in: Proc. XI International Workshop ”Lie Theory and Its Applications in Physics”, Varna, Bulgaria, June 2015, Springer Proc. in Mathematics and Statistics Vol. 191, V. Dobrev, ed. Springer, 2016, pp. 3–21.

2. The Quantum Mechanics Canonically Associated to Free Probability I: Free Momentum and Associated Kinetic Energy

3. L. Accardi, Y. G. Lu, Y. G. , and I. Volovich, Publications of IIAS (Kyoto), N1997-008 (1997).

4. K. Astala, L. Paivarinta, and E. Saksman, Proc. Royal Society of Edinburgh: Mathematics 126, 1157 (1996).

5. Fourier Analysis and Approximation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3