Improved Semantic Segmentation of Water Bodies and Land in SAR Images Using Generative Adversarial Networks

Author:

Pai M. M. Manohara1,Mehrotra Vaibhav1,Verma Ujjwal2,Pai Radhika M.1

Affiliation:

1. Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India

2. Department of Electronics and Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India

Abstract

The availability of computationally efficient and powerful Deep Learning frameworks and high-resolution satellite imagery has created new approach for developing complex applications in the field of remote sensing. The easy access to abundant image data repository made available by different satellites of space agencies such as Copernicus, Landsat, etc. has opened various avenues of research in monitoring the world’s oceans, land, rivers, etc. The challenging research problem in this direction is the accurate identification and subsequent segmentation of surface water in images in the microwave spectrum. In the recent years, deep learning methods for semantic segmentation are the preferred choice given its high accuracy and ease of use. One major bottleneck in semantic segmentation pipelines is the manual annotation of data. This paper proposes Generative Adversarial Networks (GANs) on the training data (images and their corresponding labels) to create an enhanced dataset on which the networks can be trained, therefore, reducing human effort of manual labeling. Further, the research also proposes the use of deep-learning approaches such as U-Net and FCN-8 to perform an efficient segmentation of auto annotated, enhanced data of water body and land. The experimental results show that the U-Net model without GAN achieves superior performance on SAR images with pixel accuracy of 0.98 and F1 score of 0.9923. However, when augmented with GANs, the results saw a rise in these metrics with PA of 0.99 and F1 score of 0.9954.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Linguistics and Language,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3