Flood Extent and Volume Estimation Using Remote Sensing Data

Author:

Popandopulo Georgii1ORCID,Illarionova Svetlana1ORCID,Shadrin Dmitrii12ORCID,Evteeva Ksenia1ORCID,Sotiriadi Nazar3,Burnaev Evgeny14ORCID

Affiliation:

1. Skolkovo Institute of Science and Technology, 121205 Moscow, Russia

2. Institute of Information Technology and Data Science, Irkutsk National Research Technical University, 664074 Irkutsk, Russia

3. Public Joint-Stock Company (PJSC) Sberbank of Russia, 127006 Moscow, Russia

4. Autonomous Non-Profit Organization Artificial Intelligence Research Institute (AIRI), 105064 Moscow, Russia

Abstract

Floods are natural events that can have a significant impacts on the economy and society of affected regions. To mitigate their effects, it is crucial to conduct a rapid and accurate assessment of the damage and take measures to restore critical infrastructure as quickly as possible. Remote sensing monitoring using artificial intelligence is a promising tool for estimating the extent of flooded areas. However, monitoring flood events still presents some challenges due to varying weather conditions and cloud cover that can limit the use of visible satellite data. Additionally, satellite observations may not always correspond to the flood peak, and it is essential to estimate both the extent and volume of the flood. To address these challenges, we propose a methodology that combines multispectral and radar data and utilizes a deep neural network pipeline to analyze the available remote sensing observations for different dates. This approach allows us to estimate the depth of the flood and calculate its volume. Our study uses Sentinel-1, Sentinel-2 data, and Digital Elevation Model (DEM) measurements to provide accurate and reliable flood monitoring results. To validate the developed approach, we consider a flood event occurred in 2021 in Ushmun. As a result, we succeeded to evaluate the volume of that flood event at 0.0087 km3. Overall, our proposed methodology offers a simple yet effective approach to monitoring flood events using satellite data and deep neural networks. It has the potential to improve the accuracy and speed of flood damage assessments, which can aid in the timely response and recovery efforts in affected regions.

Funder

Analytical center under the RF Government

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3