Benchmark for Building Segmentation on Up-Scaled Sentinel-2 Imagery

Author:

Illarionova Svetlana1ORCID,Shadrin Dmitrii12ORCID,Shukhratov Islomjon1ORCID,Evteeva Ksenia1ORCID,Popandopulo Georgii1,Sotiriadi Nazar3,Oseledets Ivan14ORCID,Burnaev Evgeny14ORCID

Affiliation:

1. Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia

2. Institute of Information Technology and Data Science, Irkutsk National Research Technical University, 664074 Irkutsk, Russia

3. Public Joint-Stock Company (PJSC) Sberbank of Russia, 127006 Moscow, Russia

4. Autonomous Non-Profit Organization Artificial Intelligence Research Institute (AIRI), 105064 Moscow, Russia

Abstract

Currently, we can solve a wide range of tasks using computer vision algorithms, which reduce manual labor and enable rapid analysis of the environment. The remote sensing domain provides vast amounts of satellite data, but it also poses challenges associated with processing this data. Baseline solutions with intermediate results are available for various tasks, such as forest species classification, infrastructure recognition, and emergency situation analysis using satellite data. Despite these advances, two major issues with high-performing artificial intelligence algorithms remain in the current decade. The first issue relates to the availability of data. To train a robust algorithm, a reasonable amount of well-annotated training data is required. The second issue is the availability of satellite data, which is another concern. Even though there are a number of data providers, high-resolution and up-to-date imagery is extremely expensive. This paper aims to address these challenges by proposing an effective pipeline for building segmentation that utilizes freely available Sentinel-2 data with 10 m spatial resolution. The approach we use combines a super-resolution (SR) component with a semantic segmentation component. As a result, we simultaneously consider and analyze SR and building segmentation tasks to improve the quality of the infrastructure analysis through medium-resolution satellite data. Additionally, we collected and made available a unique dataset for the Russian Federation covering area of 1091.2 square kilometers. The dataset provides Sentinel-2 imagery adjusted to the spatial resolution of 2.5 m and is accompanied by semantic segmentation masks. The building footprints were created using OpenStreetMap data that was manually checked and verified. Several experiments were conducted for the SR task, using advanced image SR methods such as the diffusion-based SR3 model, RCAN, SRGAN, and MCGR. The MCGR network produced the best result, with a PSNR of 27.54 and SSIM of 0.79. The obtained SR images were then used to tackle the building segmentation task with different neural network models, including DeepLabV3 with different encoders, SWIN, and Twins transformers. The SWIN transformer achieved the best results, with an F1-score of 79.60.

Funder

the Analytical center under the RF Government

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3