Knowledge Graph Driven Approach to Represent Video Streams for Spatiotemporal Event Pattern Matching in Complex Event Processing

Author:

Yadav Piyush1,Salwala Dhaval2,Das Dibya Prakash3,Curry Edward1

Affiliation:

1. Lero-Irish Software Research Institute, National University of Ireland Galway (NUI Galway), Galway, Ireland

2. Insight Centre for Data Analytics, National University of Ireland Galway (NUI Galway), Galway, Ireland

3. Indian Institute of Technology Kharagpur (IIT Kharagpur) Kharagpur, India

Abstract

Complex Event Processing (CEP) is an event processing paradigm to perform real-time analytics over streaming data and match high-level event patterns. Presently, CEP is limited to process structured data stream. Video streams are complicated due to their unstructured data model and limit CEP systems to perform matching over them. This work introduces a graph-based structure for continuous evolving video streams, which enables the CEP system to query complex video event patterns. We propose the Video Event Knowledge Graph (VEKG), a graph-driven representation of video data. VEKG models video objects as nodes and their relationship interaction as edges over time and space. It creates a semantic knowledge representation of video data derived from the detection of high-level semantic concepts from the video using an ensemble of deep learning models. A CEP-based state optimization — VEKG-Time Aggregated Graph (VEKG-TAG) — is proposed over VEKG representation for faster event detection. VEKG-TAG is a spatiotemporal graph aggregation method that provides a summarized view of the VEKG graph over a given time length. We defined a set of nine event pattern rules for two domains (Activity Recognition and Traffic Management), which act as a query and applied over VEKG graphs to discover complex event patterns. To show the efficacy of our approach, we performed extensive experiments over 801 video clips across 10 datasets. The proposed VEKG approach was compared with other state-of-the-art methods and was able to detect complex event patterns over videos with [Formula: see text]-Score ranging from 0.44 to 0.90. In the given experiments, the optimized VEKG-TAG was able to reduce 99% and 93% of VEKG nodes and edges, respectively, with 5.19[Formula: see text] faster search time, achieving sub-second median latency of 4–20[Formula: see text]ms.

Funder

the financial support of the Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Linguistics and Language,Information Systems,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and Performance Analysis of a Notification-Based Method for Processing Video Queries on the Fly;Applied Sciences;2024-04-24

2. Spatiotemporal Object Detection and Activity Recognition;Big Data Management;2024

3. UrbanAccess;Proceedings of the 1st International Workshop on Multimedia Computing for Urban Data;2021-10-20

4. Query-driven video event processing for the internet of multimedia things;Proceedings of the VLDB Endowment;2021-07

5. VID-WIN: Fast Video Event Matching With Query-Aware Windowing at the Edge for the Internet of Multimedia Things;IEEE Internet of Things Journal;2021-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3