Field-dependent BRST–anti-BRST Lagrangian transformations

Author:

Yu. Moshin Pavel1,Reshetnyak Alexander A.23

Affiliation:

1. Department of Physics, Tomsk State University, 634050, Tomsk, Russia

2. Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 634021, Tomsk, Russia

3. Tomsk State Pedagogical University, 634061, Tomsk, Russia

Abstract

We continue our study of finite BRST–anti-BRST transformations for general gauge theories in Lagrangian formalism, initiated in [arXiv:1405.0790 [hep-th] and arXiv:1406.0179 [hep-th]], with a doublet λa, a = 1, 2, of anticommuting Grassmann parameters, and prove the correctness of the explicit Jacobian in the partition function announced in [arXiv:1406.0179 [hep-th]], which corresponds to a change of variables with functionally dependent parameters λa = UaΛ induced by a finite Bosonic functional Λ(ϕ, π, λ) and by the anticommuting generators Ua of BRST–anti-BRST transformations in the space of fields ϕ and auxiliary variables πa, λ. We obtain a Ward identity depending on the field-dependent parameters λa and study the problem of gauge dependence, including the case of Yang–Mills theories. We examine a formulation with BRST–anti-BRST symmetry breaking terms, additively introduced into the quantum action constructed by the Sp(2)-covariant Lagrangian rules, obtain the Ward identity and investigate the gauge independence of the corresponding generating functional of Green's functions. A formulation with BRST symmetry breaking terms is developed. It is argued that the gauge independence of the above generating functionals is fulfilled in the BRST and BRST–anti-BRST settings. These concepts are applied to the average effective action in Yang–Mills theories within the functional renormalization group approach.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3