Abstract
Non-Abelian gauge theories with composite fields are examined in the background field method. Generating functionals of Green’s functions for a Yang–Mills theory with composite and background fields are introduced, including the generating functional of vertex Green’s functions (effective action). The corresponding Ward identities are obtained, and the issue of gauge dependence is investigated. A gauge variation of the effective action is found in terms of a nilpotent operator depending on the composite and background fields. On-shell independence from the choice of gauge fixing for the effective action is established. In the study of the Ward identities and gauge dependence, finite field-dependent BRST transformations with a background field are introduced and employed on a systematic basis. On the one hand, this involves the consideration of (modified) Ward identities with a field-dependent anticommuting parameter, also depending on a non-trivial background. On the other hand, the issue of gauge dependence is studied with reference to a finite variation of the gauge Fermion. The concept of a joint introduction of composite and background fields to non-Abelian gauge theories is exemplified by the Gribov–Zwanziger theory, including the case of a local BRST-invariant horizon, and also by the Volovich–Katanaev model of two-dimensional gravity with dynamical torsion.
Funder
Ministry of Education of the Russian Federation
Department of Nuclear Physics, Institute of Physics, University of São Paulo
Subject
General Physics and Astronomy
Reference77 articles.
1. Quantum theory of gravity. II. The manifestly covariant theory;DeWitt;Phys. Rev.,1967
2. Generating functional for the S matrix in gauge theories;Faddeev;Theor. Math. Phys.,1975
3. The background field method beyond one loop;Abbott;Nucl. Phys. B,1981
4. Effective action for composite operators;Cornwall;Phys. Rev. D,1974
5. Variational methods for composite operators;Haymaker;Riv. Nuovo Cim.,1991
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献