Application of machine learning algorithms in imaging Cherenkov and neutrino astronomy

Author:

Ruhe Tim1ORCID

Affiliation:

1. Experimentelle Physik 5, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany

Abstract

Over the last decade, machine learning algorithms have become standard analysis tools in astroparticle physics, used by a variety of instruments and for an even larger variety of analyses. While a few characteristic patterns can be observed, the portability of established machine learning-based analysis chains from one experiment to another, remains challenging, as instrument-specific prerequisites and adjustments need to be addressed prior to the application. The use Boosted Decision Trees and other tree-based ensemble methods, has been established, but also recently been challenged by the overall success of Deep Neural Networks. Machine learning has been applied for particle selection and parameter reconstruction, as well as for the extraction of energy spectra. This paper aims at summarizing some of the most common approaches on the application of machine learning in astroparticle physics and at providing brief overview on how they have been applied in practice.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3