Abstract
We applied the image-based approach with a convolutional neural network (CNN) model to the sample of low-redshift galaxies with –24m<Mr<–19.4m from the SDSS DR9. We divided it into two subsamples, SDSS DR9 galaxy dataset and Galaxy Zoo 2 (GZ2) dataset, considering them as the inference and training datasets, respectively. To determine the principal parameters of galaxy morphology defined within the GZ2 project, we classified the galaxies into five visual types and 34 morphological features of galaxies from the inference dataset, which do not match with GZ2 training dataset. As a result, we created the morphological catalog of 315782 galaxies at 0.02<z<0.1, where these classes and features were defined for the first time for 216148 galaxies by image-based CNN classifier. For the rest of galaxies the initial morphological classification was re-assigned as in the GZ2 project. Main results are presented in the catalog of 19468 completely rounded, 27321 rounded in-between, 3235 cigar-shaped, 4099 edge-on, 18615 spiral, and 72738 general low-redshift galaxies of the studied SDSS sample. Our method shows the promising performance of morphological classification attaining >93 % of accuracy for five classes morphology prediction except the cigar-shaped (~75 %) and completely rounded (~83 %) galaxies. As for the classification of galaxies by their detailed structural morphological features, our CNN model gives the accuracy in the range of 92–99 % depending on features, a number of galaxies with the given feature in the inference dataset, and the galaxy image quality. As a result, for the first time we assigned 34 morphological detailed features (bar, rings, number of spiral arms, mergers, etc.) for more than 160000 low-redshift galaxies from the SDSS DR9. We demonstrate that implication of the CNN model with adversarial validation and adversarial image data augmentation improves classification of smaller and fainter SDSS galaxies with mr <17.7.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
Subject
Anesthesiology and Pain Medicine
Reference117 articles.
1. 1. Abul Hayat Md., Stein G., Harrington P. et al. Self-Supervised Representation Learning for Astronomical Images. eprint arXiv:2012.13083 (2020)
2. 2. Ahn C.P., Alexandroff R., Allende Prieto C. et al. The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey. Astrophys. J. Suppl., 203, 2, 21 (2012) https:/doi.org/10.1088/0067-0049/203/2/21
3. 3. Amiaux J., Scaramella R., Mellier Y. et al. Euclid mission: building of a reference survey. SPIE Proceedings, vol. 8442, Space Telescopes and Instrumentation: Optical, Infrared, and Millimeter Wave; 84420Z (2012) https://doi.org/10.1117/12.926513
4. 4. Aniyan A.K., Thorat K. Classifying Radio Galaxies with the Convolutional Neural Network. Astrophys. J. Suppl. Ser., 230, 2, 20 (2017). https://doi.org/10.3847/1538-4365/aa7333
5. 5. Babyk I.; Vavilova I. The distant galaxy cluster XLSSJ022403.9-041328 on the LX-TX-M scaling relations using Chandra and XMM-Newton observations. Astrophys. & Space Sci., 353, 2, 613-619 (2014). https://doi.org/10.1007/s10509-014-2057-x
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献