Affiliation:
1. The Institute for Cognitive Systems, Technical University of Munich, Arcisstrasse 21 80333, Munich, Germany
Abstract
In this paper, we propose a probabilistic active tactile transfer learning (ATTL) method to enable robotic systems to exploit their prior tactile knowledge while discriminating among objects via their physical properties (surface texture, stiffness, and thermal conductivity). Using the proposed method, the robot autonomously selects and exploits its most relevant prior tactile knowledge to efficiently learn about new unknown objects with a few training samples or even one. The experimental results show that using our proposed method, the robot successfully discriminated among new objects with [Formula: see text] discrimination accuracy using only one training sample (on-shot-tactile-learning). Furthermore, the results demonstrate that our method is robust against transferring irrelevant prior tactile knowledge (negative tactile knowledge transfer).
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Mechanical Engineering
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献