Dynamic and Reactive Walking for Humanoid Robots Based on Foot Placement Control

Author:

Castano Juan Alejandro1,Li Zhibin1,Zhou Chengxu1,Tsagarakis Nikos1,Caldwell Darwin1

Affiliation:

1. Department of Advanced Robotics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy

Abstract

This paper presents a novel online walking control that replans the gait pattern based on our proposed foot placement control using the actual center of mass (COM) state feedback. The analytic solution of foot placement is formulated based on the linear inverted pendulum model (LIPM) to recover the walking velocity and to reject external disturbances. The foot placement control predicts where and when to place the foothold in order to modulate the gait given the desired gait parameters. The zero moment point (ZMP) references and foot trajectories are replanned online according to the updated foothold prediction. Hence, only desired gait parameters are required instead of predefined or fixed gait patterns. Given the new ZMP references, the extended prediction self-adaptive control (EPSAC) approach to model predictive control (MPC) is used to minimize the ZMP response errors considering the acceleration constraints. Furthermore, to ensure smooth gait transitions, the conditions for the gait initiation and termination are also presented. The effectiveness of the presented gait control is validated by extensive disturbance rejection studies ranging from single mass simulation to a full body humanoid robot COMAN in a physics based simulator. The versatility is demonstrated by the control of reactive gaits as well as reactive stepping from standing posture. We present the data of the applied disturbances, the prediction of sagittal/lateral foot placements, the replanning of the foot/ZMP trajectories, and the COM responses.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Mechanical Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Walking position commanded NAO robot using nonlinear disturbance observer-based fixed-time terminal sliding mode;ISA Transactions;2023-12

2. A Heuristics-Based Reinforcement Learning Method to Control Bipedal Robots;International Journal of Humanoid Robotics;2023-09-15

3. A Deep Learning-Based Approach for Foot Placement Prediction;IEEE Robotics and Automation Letters;2023-08

4. Reachability Map for Diverse and Energy Efficient Stepping of Humanoids;IEEE/ASME Transactions on Mechatronics;2022-12

5. A Biped Robot Learning to Walk like Human by Reinforcement Learning;Proceedings of the 4th International Conference on Advanced Information Science and System;2022-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3