CONTROLLING A MOTORIZED MARIONETTE WITH HUMAN MOTION CAPTURE DATA

Author:

YAMANE KATSU1,HODGINS JESSICA K.2,BROWN H. BENJAMIN2

Affiliation:

1. Department of Mechano-Informatics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

2. The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA

Abstract

In this paper, we present a method for controlling a motorized, string-driven marionette using motion capture data from human actors and from a traditional marionette operated by a professional puppeteer. We are interested in using motion capture data of a human actor to control the motorized marionette as a way of easily creating new performances. We use data from the hand-operated marionette both as a way of assessing the performance of the motorized marionette and to explore whether this technology could be used to preserve marionette performances. The human motion data must be extensively adapted for the marionette because its kinematic and dynamic properties differ from those of the human actor in degrees of freedom, limb length, workspace, mass distribution, sensors, and actuators. The motion from the hand-operated marionette requires less adaptation because the controls and dynamics are a closer match. Both data sets are adapted using an inverse kinematics algorithm that takes into account marker positions, joint motion ranges, string constraints, and potential energy. We also apply a feedforward controller to prevent extraneous swings of the hands. Experimental results show that our approach enables the marionette to perform motions that are qualitatively similar to the original human motion capture data.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PuppetMaster;ACM Transactions on Graphics;2019-08-31

2. The Willful Marionette;Proceedings of the 2017 ACM SIGCHI Conference on Creativity and Cognition;2017-06-22

3. Designing for Gesture and Tangible Interaction;Synthesis Lectures on Human-Centered Informatics;2017-03-13

4. Sequence and chance: Design and control methods for entertainment robots;Robotics and Autonomous Systems;2017-01

5. The Willful Marionette: Modeling Social Cognition Using Gesture-Gesture Interaction Dialogue;Lecture Notes in Computer Science;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3