Sliding Perturbation Observer Based Reaction Force Estimation Method of Surgical Robot Instrument for Haptic Realization

Author:

Yoon Sung Min1,Lee Min Cheol2,Kim Chi Yen3

Affiliation:

1. Graduate School of Mechanical Engineering, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan, South Korea

2. School of Mechanical Engineering, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan, South Korea

3. Department of Mechanical Engineering, The University of Texas at El Paso, 500 W. University Ave, El Paso, Texas, USA

Abstract

Previous research applied sliding mode control with a sliding perturbation observer (SMCSPO) algorithm as a robust controller to control a surgical robotic instrument and reported that reaction force loaded on the tip can be estimated similarly by the sliding perturbation observer (SPO). However, some factors, such as friction, in which it is difficult to find the model parameters beforehand, can have an effect on the reaction force estimation because the factors are included in the estimated perturbation. This paper addresses the SPO based reaction force estimation method to extract a pure reaction force on a surgical robot instrument in the case of including Coulomb friction due to the operation of cable-pulley structure. Coulomb friction can be estimated experimentally and compensated for from the estimated perturbation. An experimental evaluation was performed to prove the suggested estimation method. The results show that SPO can be substituted for sensors to measure the reaction force. This estimated reaction force will be used to realize the haptic function by sending the reaction force to a master device for a surgeon. The results will help to create surgical benefit such as shortening the practice time of a surgeon and providing haptic information to the surgeon by using it as haptic signal to protect an organ by forming a force boundary.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3