Abstract
In the underwater environment, robust control algorithms are required to control autonomous underwater vehicles (AUVs) at high speed while preventing large nonlinearities and disturbances. Sliding mode control (SMC) is a well-known robust control theory and has been widely used not only in AUV control but also in systems such as industrial robots which have high nonlinearity in their system dynamics. However, SMC has the disadvantage of causing chattering on the control input, and it is difficult to apply this method to the control fins of an AUV system that cannot move its fins at high speed underwater. In this work, a design for a sliding mode control with sliding perturbation observer (SMCSPO) algorithm is applied to AUVs, and the simulation results under underwater disturbance conditions are discussed. From simulation using MATLAB, it is confirmed that AUV control using SMCSPO shows better trajectory tracking control performance without chattering than PID control.
Funder
Ministry of Trade, Industry and Energy
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献