RUNNING PATTERN GENERATION WITH A FIXED POINT IN A 2D PLANAR BIPED

Author:

CHO BAEK-KYU1,OH JUN-HO1

Affiliation:

1. Department of Mechanical Engineering, KAIST, 335 Gwahangno Yuseong-gu, Daejeon, 305-701, Republic of Korea

Abstract

This paper discusses the generation of a running pattern for a biped and verifies the validity of the proposed method of running pattern generation via experiments. When a running pattern is created with resolved momentum control, the angular momentum of the robot at the Center of Mass (COM) is set to zero, as the angular momentum causes the robot to rotate. However, this also induces unnatural motion of the upper body of the robot. To resolve this problem, the biped was set to a virtual under-actuated robot with a free joint at its support ankle, and a fixed point for a virtual system was determined. Following this, a new periodic running pattern was formulated using the fixed point. The fixed point is easily determined using a numerical approach. In an experiment, the planar biped ran forward using the proposed pattern generation method for running. Its maximum velocity was 2.88 km/h. In the future, faster running of the biped will be realized in a planar plane and the biped will run in an actual environment.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Walking Speed Control of Planar Bipedal Robot with Phase Control;International Journal of Humanoid Robotics;2022-12

2. History of HUBO: Korean Humanoid Robot;Humanoid Robotics: A Reference;2018-10-10

3. Discrete sliding mode control to stabilize running of a biped robot with compliant kneed legs;Automatic Control and Computer Sciences;2017-09

4. History of HUBO, Korean Humanoid Robot;Humanoid Robotics: A Reference;2017

5. Stable active running of a planar biped robot using Poincare map control;Advanced Robotics;2013-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3