ON THE REPRESENTATION, LEARNING AND TRANSFER OF SPATIO-TEMPORAL MOVEMENT CHARACTERISTICS

Author:

ILG WINFRIED1,BAKIR GÖKHAN H.2,MEZGER JOHANNES3,GIESE MARTIN A.1

Affiliation:

1. Department for Cognitive Neurology, University Clinic Tübingen, Schaffhausenstr.113, 72072 Tübingen, Germany

2. Department for Empirical Inference for Machine Learning and Perception, Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany

3. Graphical-Interactive Systems, Wilhelm Schickard Institute for Computer Science, University of Tübingen, Germany, Sand 14, 72076 Tübingen, Germany

Abstract

In this paper we present a learning-based approach for the modeling of complex movement sequences. Based on the method of Spatio-Temporal Morphable Models (STMMs) we derive a hierarchical algorithm that, in a first step, identifies automatically movement elements in movement sequences based on a coarse spatio-temporal description, and in a second step models these movement primitives by approximation through linear combinations of learned example movement trajectories. We describe the different steps of the algorithm and show how it can be applied for modeling and synthesis of complex sequences of human movements that contain movement elements with a variable style. The proposed method is demonstrated on different applications of movement representation relevant for imitation learning of movement styles in humanoid robotics.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Mechanical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification-based Segmentation for Rehabilitation Exercise Monitoring;Journal of Rehabilitation and Assistive Technologies Engineering;2018-01

2. PCA-Based Algorithms to Find Synergies for Humanoid Robot Motion Behavior;International Journal of Humanoid Robotics;2016-05-25

3. Bayesian Approaches for Learning of Primitive-Based Compact Representations of Complex Human Activities;Dance Notations and Robot Motion;2015-11-25

4. Segmenting motion capture data using a qualitative analysis;Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games;2015-11-16

5. Full-Body Postural Control of a Humanoid Robot with Both Imitation Learning and Skill Innovation;International Journal of Humanoid Robotics;2014-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3