Isotropic Quot schemes of orthogonal bundles over a curve

Author:

Cheong Daewoong1,Choe Insong2,Hitching George H.3ORCID

Affiliation:

1. Department of Mathematics, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju City, Chungbuk 28644, Korea

2. Department of Mathematics, Konkuk University, 1 Hwayang-dong, Gwangjin-Gu, Seoul 143-701, Korea

3. Oslo Metropolitan University, Postboks 4, St. Olavs Plass, 0130 Oslo, Norway

Abstract

We study the isotropic Quot schemes [Formula: see text] parametrizing degree [Formula: see text] isotropic subsheaves of maximal rank of an orthogonal bundle [Formula: see text] over a curve. The scheme [Formula: see text] contains a compactification of the space [Formula: see text] of degree [Formula: see text] maximal isotropic subbundles, but behaves quite differently from the classical Quot scheme, and the Lagrangian Quot scheme in [D. Cheong, I. Choe and G. H. Hitching, Irreducibility of Lagrangian Quot schemes over an algebraic curve, preprint (2019), arXiv:1804.00052, v2]. We observe that for certain topological types of [Formula: see text], the scheme [Formula: see text] is empty for all [Formula: see text]. In the remaining cases, for infinitely many [Formula: see text] there are irreducible components of [Formula: see text] consisting entirely of nonsaturated subsheaves, and so [Formula: see text] is strictly larger than the closure of [Formula: see text]. As our main result, we prove that for any orthogonal bundle [Formula: see text] and for [Formula: see text], the closure [Formula: see text] of [Formula: see text] is either empty or consists of one or two irreducible connected components, depending on [Formula: see text] and [Formula: see text]. In so doing, we also characterize the nonsaturated part of [Formula: see text] when [Formula: see text] has even rank.

Funder

Ministry of Education

Ministry of Science, ICT and Future Planning

Oslo Metropolitan University

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simplicity of Tangent bundles on the moduli spaces of symplectic and orthogonal bundles over a curve;Comptes Rendus. Mathématique;2024-05-31

2. Picard Groups of Some Quot Schemes;International Mathematics Research Notices;2024-02-22

3. LOW RANK ORTHOGONAL BUNDLES AND QUADRIC FIBRATIONS;J KOREAN MATH SOC;2023

4. Irreducibility of Lagrangian Quot schemes over an algebraic curve;Mathematische Zeitschrift;2021-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3