HECKE CORRESPONDENCE FOR SYMPLECTIC BUNDLES WITH APPLICATION TO THE PICARD BUNDLES

Author:

BISWAS INDRANIL1,GÓMEZ TOMÁS L.2

Affiliation:

1. School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

2. Instituto de Matemáticas y Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113 bis, 28006 Madrid, Spain

Abstract

We construct a Hecke correspondence for a moduli space of symplectic vector bundles over a curve. As an application we prove the following. Let X be a complex smooth projective curve of genus g(X) > 2 and L a line bundle over X. Let [Formula: see text] be the moduli space parametrizing stable pairs of the form (E,φ), where E is a vector bundle of rank 2n over X and φ : E ⊗ E → L a skew-symmetric nondegenerate bilinear form on the fibers of E. If deg (E) ≥ 4n(g(X)-1), then there is a projectivized Picard bundle on [Formula: see text], which is a projective bundle whose fiber over any point [Formula: see text] is ℙ(H0(X,E)). We prove that this projective bundle is stable.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3