THE TRANSITIVE CLOSURE AND RELATED ALGORITHMS OF DIGRAPH ON THE RECONFIGURABLE ARCHITECTURE

Author:

PAN TIEN-TAI1,LIN SHUN-SHII1

Affiliation:

1. Department of Computer Science and Information Engineering, National Taiwan Normal University, Taipei, Taiwan 10610, R.O.C

Abstract

The reconfigurable architecture is a parallel computation model that consists of many processor elements (PEs) and a reconfigurable bus system. There are many variant proposed reconfigurable architectures, for example, reconfigurable mesh (R-Mesh), directional reconfigurable mesh (DR-Mesh), processor arrays with reconfigurable bus systems (PARBS), complete directional processor arrays with reconfigurable bus systems (CD-PARBS), reconfigurable multiple bus machine (RMBM), directional reconfigurable multiple bus machine (directional RMBM), and etc. In this paper, a transitive closure (TC) algorithm of digraph is proposed on the models without the directional capability (non-directional). Some related digraph problems, such as strongly connected digraph, strongly connected component (SCC), cyclic checking, and tree construction, can also be resolved by modifying our transitive closure algorithm. All the proposed algorithms are designed on a three-dimensional (3-D) n×n×n non-directional reconfigurable mesh, n is the number of vertices in a digraph D, and can resolve the respective problems in O(log d(D)) time, d(D) is the diameter of the digraph D. The cyclic checking problem can be further reduced to O(log c(D)) time, c(D) is the minimum distance of cycles in the digraph D. There exist two different approaches: the matrix multiplication approach on the non-directional models for algebraic path problems (APP) and s-t connectivity approach on the directional models. In this paper, we will use the tree construction algorithm to prove those two approaches are insufficient to resolve all digraph problems and demonstrate why our approach is so important and innovative for digraph problems on the reconfigurable models.

Publisher

World Scientific Pub Co Pte Lt

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Algorithm for Maximum Flow Analysis in Traffic Network Based on Fuzzy Matrix;Communications in Computer and Information Science;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3