Bonding performance and mechanism of a heat-resistant composite precursor adhesive (RT-1000∘C) for TC4 titanium alloy

Author:

Wang Mingchao1,Bu Fanxing1,Zhou Cunjun2,Zhou Qingjun1,Wei Tong1,Liu Jiachen3,Zhai Wenzheng4

Affiliation:

1. College of Science, Civil Aviation, University of China, Tianjin 300300, P. R. China

2. College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, P. R. China

3. School of Materials and Engineering, Key Lab of Advanced Ceramics and Machining, Technology of Ministry of Education, Tianjin University, Tianjin 300072, P. R. China

4. State Key Laboratory of Digital, Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China

Abstract

To facilitate the repairing and connecting processes for the non-main bearing TC4 alloy, a high-temperature (up to 1000[Formula: see text]C) resistant adhesive that is converted to the composite of intermetallics and ceramics is prepared. The composition evolution of the adhesive, the structure changes in the bonding layer, the reaction process at interfaces and the fracture mode of joints are comprehensively studied to explore its bonding mechanism. The results show that chemical bonding mechanism based on the formation of Ti5Si3 plays a critical role at 600[Formula: see text]C, and acts as the crucial one at elevated temperatures. As the reaction interlayer (2–5[Formula: see text][Formula: see text]m) is far thinner than the entire bonding layer (60–70[Formula: see text][Formula: see text]m), mechanical properties of the adhesive dominate the bonding performance, which is tied up with the composition and structure evolution. The differ of coefficient of thermal expansion (CTE) between the adhesive and the substrate remains lower than [Formula: see text][Formula: see text]K[Formula: see text] in range of 500–1000[Formula: see text]C. Specifically, the formation of composites from intermetallics and ceramics improves the mechanical properties and heat-resistant of the adhesive. The bonding strength reaches [Formula: see text]40[Formula: see text]MPa after pre-treatment at 1000[Formula: see text]C without pressure, and remains over 30[Formula: see text]MPa within the normal operating temperature range of 500–700[Formula: see text]C.

Publisher

World Scientific Pub Co Pte Lt

Subject

Polymers and Plastics,Mechanics of Materials,Atomic and Molecular Physics, and Optics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3