Preparation of Ceramic Fiber Threads with Enhanced Abrasion Resistance Performance

Author:

Zhang Xueying1,Hou Feng1ORCID,Du Haiyan1,Yan Liwen1,Guo Anran1,Ma Xiaohui1,Liu Jiachen1

Affiliation:

1. Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China

Abstract

Ceramic fiber thread is one of the key components in flexible external thermal insulation blankets, and it has been applied in various fields as a flexible ceramic fibrous material with excellent deformability and high-temperature resistance. However, ceramic fiber threads are often subjected to reciprocating friction motion at specific bending angles, making them highly susceptible to abrade and fracture. Enhancing the abrasion resistance performance of ceramic fiber threads under bending conditions is the future trend and remains a significant challenge. Hence, we design and construct a novel polyurethane-modified coating on the ceramic fiber threads to improve their abrasion resistance performance. The effects of the types and concentrations of modifiers on the microstructure, abrasion resistance property, and tensile property of ceramic fiber threads are systematically investigated. The ceramic fiber threads, after modification with hexamethylene diisocyanate waterborne polyurethane (HDI-WPU) with a concentration of 3%, exhibit excellent abrasion resistance properties. The number of friction cycles at fracture of the modified ceramic fiber thread is more than three times, and the tensile strength is more than one and a half times, that of the original ceramic fiber thread, demonstrating the great potential of the HDI-WPU modifier for enhancing the abrasion resistance performance of ceramic fiber threads.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3