Martensite decomposition during post-heat treatments and the aging response of near-α Ti–6Al–2Sn–4Zr–2Mo (Ti-6242) titanium alloy processed by selective laser melting (SLM)

Author:

Fan Haiyang1,Liu Yahui2,Yang Shoufeng3

Affiliation:

1. Department of Mechanical Engineering and Member of Flanders Make, KU Leuven, Celestijnenlaan 300B, Box 2420, Heverlee, B-3001, Leuven, Belgium

2. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, P. R. China

3. Engineering Materials, Faculty of Engineering and Physical Sciences, University of Southampton, UK

Abstract

Ti–6Al–2Sn–4Zr–2Mo (Ti-6242), a near-[Formula: see text] titanium alloy explicitly designed for high-temperature applications, consists of a martensitic structure after selective laser melting (SLM). However, martensite is thermally unstable and thus adverse to the long-term service at high temperatures. Hence, understanding martensite decomposition is a high priority for seeking post-heat treatment for SLMed Ti-6242. Besides, compared to the room-temperature titanium alloys like Ti–6Al–4V, aging treatment is indispensable to high-temperature near-[Formula: see text] titanium alloys so that their microstructures and mechanical properties are pre-stabilized before working at elevated temperatures. Therefore, the aging response of the material is another concern of this study. To elaborate the two concerns, SLMed Ti-6242 was first isothermally annealed at 650[Formula: see text]C and then water-quenched to room temperature, followed by standard aging at 595[Formula: see text]C. The microstructure analysis revealed a temperature-dependent martensite decomposition, which proceeded sluggishly at [Formula: see text]C despite a long duration but rapidly transformed into lamellar [Formula: see text] above the martensite transition zone (770[Formula: see text]C). As heating to [Formula: see text]C), it produced a coarse microstructure containing new martensites formed in water quenching. The subsequent mechanical testing indicated that SLM-built Ti-6242 is excellent in terms of both room- and high-temperature tensile properties, with around 1400 MPa (UTS)[Formula: see text]5% elongation and 1150 MPa (UTS)[Formula: see text]10% elongation, respectively. However, the combination of water quenching and aging embrittled the as-built material severely.

Funder

China Scholarship Council

Publisher

World Scientific Pub Co Pte Ltd

Subject

Polymers and Plastics,Mechanics of Materials,Atomic and Molecular Physics, and Optics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3