Microstructure, Mechanical, and Tribological Properties of Nb-Doped TiAl Alloys Fabricated via Laser Metal Deposition

Author:

Huang Kai1,Xu Feng12,Liu Xinyan12,Liu Shiqiu3,Wang Qingge1ORCID,Baker Ian4ORCID,Song Min1ORCID,Wu Hong1

Affiliation:

1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

2. Farsoon Technologies Co., Ltd., Changsha 410221, China

3. Advanced Materials Additive Manufacturing Innovation Research Center, School of Engineering, Hangzhou City University, Hangzhou 310015, China

4. Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA

Abstract

TiAl alloys possess excellent properties, such as low density, high specific strength, high elastic modulus, and high-temperature creep resistance, which allows their use to replace Ni-based superalloys in some high-temperature applications. In this work, the traditional TiAl alloy Ti-48Al-2Nb-2Cr (Ti4822) was alloyed with additional Nb and fabricated using laser metal deposition (LMD), and the impacts of this additional Nb on the microstructure and mechanical and tribological properties of the as-fabricated alloys were investigated. The resulting alloys mainly consisted of the γ phase, trace β0 and α2 phases. Nb was well distributed throughout the alloys, while Cr segregation resulted in the residual β0 phase. Increasing the amount of Nb content increased the amount of the γ phase and reduced the amount of the β0 phase. The alloy Ti4822-2Nb exhibited a room-temperature (RT) fracture strength under a tensile of 568 ± 7.8 MPa, which was nearly 100 MPa higher than that of the Ti4822-1Nb alloy. A further increase in Nb to an additional 4 at.% Nb had little effect on the fracture strength. Both the friction coefficient and the wear rate increased with the increasing Nb content. The wear mechanisms for all samples were abrasive wear with local plastic deformation and oxidative wear, resulting in the formation of metal oxide particles.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province for Distinguished Young Scholars

Scientific and Technological Project of Yunnan Precious Metals Laboratory

Central South University Research Program of Advanced Interdisciplinary Studies

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3