Significant Solar Thermal Conversion Properties of Ethylene Glycol Nanofluids Enhanced by Carbon Chain Nanostructures

Author:

Wang Jiayao1,Zhang Wei1,Wu Daxiong1ORCID,Zhang Canying1,Zhu Haitao1ORCID

Affiliation:

1. College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China

Abstract

Nanofluids are promising in solar harvesting and solar thermal utilization. Ethylene glycol (EG) nanofluids have the advantages of high boiling point and low volatility, and therefore are highly desired in some circumstances. In this study, the solar harvesting and solar thermal conversion properties of EG were significantly enhanced by carbon chain nanostructures (CCNSs). The prepared CCNSs/EG nanofluids showed greater optical absorption compared to EG in the wavelength range from 250[Formula: see text]nm to 1400[Formula: see text]nm. The solar weighted absorption factor (Am) of the CCNSs/EG nanofluids was 95.9% at the mass fraction of 0.05 wt.%. The enhancement was 649.2% compared to that of EG. The photothermal conversion efficiency was determined to be 97.7% and the enhancement of 83.0% was achieved. An enhancement of 1.2% in thermal conductivity was also been observed. These enhancements can be ascribed to the special architectures of the CCNSs that provide fast transfer path for the generated heat.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3