Investigation of Thermal Conductivity and Viscosity of Al2O3/Water Nanofluids Using Full Factorial Design and Utility Concept

Author:

Khurana Deepak1,Choudhary Rajesh1,Subudhi Sudhakar1

Affiliation:

1. Mechanical and Industrial Engineering Department, Indian Institute of Technology, Roorkee Uttarakhand-247667, India

Abstract

In the present study, the effect of particle concentration, particle diameter and temperature on the thermal conductivity and viscosity of Al2O3/water nanofluids was investigated experimentally using design of experiment approach (full factorial design). Variables were selected at two levels each: particle concentration (0.1–1%), particle diameter (20–40[Formula: see text]nm) and temperature (10–40[Formula: see text]C). It was observed that the thermal conductivity of the Al2O3/water nanofluids increases with increasing concentration and temperature and decreases with increase in particle diameter, while viscosity increases with increasing particle diameter. Results showed that the interaction effect of concentration and temperature also has significant effect on the thermal conductivity of Al2O3/water nanofluids. For viscosity, the interaction of particle diameter and temperature was important. Utility concept was used to optimize the properties collectively for better heat transfer performance. The optimal combination for high thermal conductivity and low viscosity was obtained at higher level of particle concentration (1%), lower level of particle diameter (20[Formula: see text]nm) and higher level of temperature (40[Formula: see text]C). At this condition the increment in thermal conductivity and viscosity compared to base fluid was 11.51% and 6.37%, respectively.

Funder

Department of Science and Technology, Government of India

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3