Enhanced Piezoelectric Performance of Electrospun PVDF-MWCNT-Cu Nanocomposites for Energy Harvesting Application

Author:

Selvan Ramadoss Tamil1ORCID,Jia Choo Yan1,Jayathilaka W. A. D. M.1,Chinappan Amutha1,Alam Hilaal2,Ramakrishna Seeram1

Affiliation:

1. Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore

2. Qubitor Pte Ltd, JTC LaunchPad@OneNorth, 79, Ayer Rajah Crescent, 04 - 03/04, Singapore 139955, Singapore

Abstract

Piezoelectric principle is one of the popular choices when it comes to mechanical energy recovery and conversion of energy into electrical energy which can be either stored or used straightaway. In general, ceramic-based piezoelectric materials like Lead Zirconate Titanate (PZT) had been the popular choice for piezoelectric devices even though they are brittle in nature and found to be toxic in long uses. At the same time, organic-based Polyvinylidene Fluoride (PVDF) and similar polymeric materials have been used in different applications with an offer of flexibility, lightweight and biocompatibility. One major factor dragging down the usage of organic materials in piezoelectric applications is their poor piezoelectric responses. In this work, authors are reporting the enhanced piezoelectric properties of nanofibers of PVDF in composite with copper nanoparticles and Multiwalled Carbon Nanotubes (MWCNTs). Fourier Transformation Infrared (FTIR) analysis has been carried out for nanofibers and was able to prove the higher beta phase conversion of PVDF in composite nanofibers when compared with pristine nanofibers. Composite nanofibers were later fabricated into a piezoelectric device with two electrodes and have shown a peak voltage of 6.78 V upon a drop test. As a proof of concept, the mentioned piezoelectric device was integrated into a shoe-based prototype where it has shown 18–20[Formula: see text]V energy harvesting upon walking at leisurely pace.

Funder

National University of Singapore (NUS), Singapore

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3