Recent developments in wearable piezoelectric energy harvesters

Author:

Sun Lei1,He Lipeng12ORCID,Yu Gang1ORCID,Zheng Xiaotian1ORCID,Wang Hongxin1,Yu Dahai3ORCID,Lin Jieqiong1ORCID

Affiliation:

1. Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing (Jilin Province), School of Mechatronic Engineering, Changchun University of Technology 1 , Changchun, Jilin 130012, China

2. Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University 2 , Changchun, Jilin 130022, China

3. School of Electronic and Information, Changchun Guanghua University 3 , Changchun, Jilin 130033, China

Abstract

Wearable piezoelectric energy harvesters (WPEHs) have gained popularity and made significant development in recent decades. The harvester is logically built by the movement patterns of various portions of the human body to harvest the movement energy and immediately convert it into usable electrical energy. To directly power different microelectronic devices on the human body, a self-powered device that does not require an additional power supply is being created. This Review provides an in-depth review of WPEHs, explaining the fundamental concepts of piezoelectric technology and the materials employed in numerous widely used piezoelectric components. The harvesters are classed according to the movement characteristics of several portions of a person's body, such as pulses, joints, skin, and shoes (feet). Each technique is introduced, followed by extensive analysis. Some harvesters are compared, and the benefits and drawbacks of each technique are discussed. Finally, this Review presents future goals and objectives for WPEH improvement, and it will aid researchers in understanding WPEH to the point of more efficient wireless energy delivery to wearable electronic components.

Funder

Supported by Opening Project of the Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University

Education Department of Jilin Province

Jilin Provincial International Cooperation Key Laboratory for High Performance Manufacturing and Testing

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3