Change of Bandgap Energy in Quantum System of Nanolayer on Silicon

Author:

Huang Wei-Qi12ORCID,Wang Zi-Lin1,Chen Cui-Fen1,Wang Ke1,Peng Hong-Yan1,Huang Zhong-Mei2,Li Xin2,Wang An-Chen2,Liu Shi-Rong3

Affiliation:

1. Department of Physics, Hainan Normal University, Haikou 571158, China

2. College of Materials and Metallurgy, Institute of Nanophotonic Physics, Guizhou University, Guiyang 550025, P. R. China

3. State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003, P. R. China

Abstract

In the quantum system of nanolayer (NL) on silicon, the bandgap energy obviously increases with the decrease of NL thickness, where the quantum confinement (QC) effect plays the main role as the thickness of Si NL changes along with (100), (110) and (111) directions, respectively. And the simulation result demonstrated that the direct bandgap can be obtained as the NL with (001) direction is thinner than 10 nm on Si surface. However, it is discovered in the simulated calculation that the QC effect disappears as the NL thickness arrives at the size of the monoatomic layer, in which its bandgap sharply decreases, where the abrupt change effect in bandgap energy occurs near-ideal 2D-layer. In the experiment, we fabricated the Si NL structure by using electron beam irradiation and laser deposition methods, in which a novel way was used to control the NL thickness by modulating irradiation time of the electron beam. The new effect should have a good application on a photonic-electronic chip of silicon.

Funder

natural science foundation of guizhou province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3